tf.variable_scope和tf.name_scope的区别

 
  1. tf.variable_scope可以让变量有相同的命名,包括tf.get_variable得到的变量,还有tf.Variable的变量

  2. tf.name_scope可以让变量有相同的命名,只是限于tf.Variable的变量

import tensorflow as tf; 
import numpy as np; 
import matplotlib.pyplot as plt;

with tf.name_scope('V1'):
    # a1 = tf.get_variable(name='a1', shape=[1], initializer=tf.constant_initializer(1))
    a2 = tf.Variable(tf.random_normal(shape=[2,3], mean=0, stddev=1), name='a2')
with tf.name_scope('V2'):
    # a3 = tf.get_variable(name='a1', shape=[1], initializer=tf.constant_initializer(1))
    a4 = tf.Variable(tf.random_normal(shape=[2,3], mean=0, stddev=1), name='a2')

with tf.Session() as sess:
    sess.run(tf.initialize_all_variables())
    # print a1.name
    print a2.name
    # print a3.name
    print a4.name